Differentiating between models of epothilone binding to microtubules using tubulin mutagenesis, cytotoxicity, and molecular modeling.

نویسندگان

  • Ruth A Entwistle
  • Rania S Rizk
  • Daniel M Cheng
  • Gerald H Lushington
  • Richard H Himes
  • Mohan L Gupta
چکیده

Microtubule stabilizers are powerful antimitotic compounds and represent a proven cancer treatment strategy. Several classes of compounds in clinical use or trials, such as the taxanes and epothilones, bind to the same region of β-tubulin. Determining how these molecules interact with tubulin and stabilize microtubules is important both for understanding the mechanism of action and enhancing chemotherapeutic potential, for example, minimizing side effects, increasing solubility, and overcoming resistance. Structural studies using non-polymerized tubulin or stabilized polymers have produced different models of epothilone binding. In this study we used directed mutagenesis of the binding site on Saccharomyces cerevisiae β-tubulin to analyze interactions between epothilone B and its biologically relevant substrate, dynamic microtubules. Five engineered amino acid changes contributed to a 125-fold increase in epothilone B cytotoxicity independent of inherent microtubule stability. The mutagenesis of endogenous β-tubulin was done in otherwise isogenic strains. This facilitated the correlation of amino acid substitutions with altered cytotoxicity using molecular mechanics simulations. The results, which are based on the interaction between epothilone B and dynamic microtubules, most strongly support the binding mode determined by NMR spectroscopy-based studies. This work establishes a system for discriminating between potential binding modes and among various compounds and/or analogues using a sensitive biological activity-based readout.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Modeling Studies on Vinblastine Binding Site of Tubulin for Antimitotic agents

Medicinal chemistry depends on many other disciplines ranging from organic chemistry andpharmacology to computational chemistry. Typically medicinal chemists use the moststraightforward ways to prepare compounds. The validation of any design project comes from thebiological testing.Studies of the binding site of vinblastine by a single cross—linking experiment identified it asbeing between resi...

متن کامل

Comparison of Epothilone and Taxol Binding in Yeast Tubulin using Molecular Modeling

Microtubules are unique cytoskeletal structures that have structural subunits of αβ tubulin. Taxol is a typical microtubule stabilizing drug. The epothilones are other natural products with similar mechanism of action totaxol. Despite the highly conserved nature of β-tubulin, some organism like Saccharomyces cerevesia (S.cerevesia) is resistance to taxol, but sensitive to epothilones. In order ...

متن کامل

Epothilone and paclitaxel: unexpected differences in promoting the assembly and stabilization of yeast microtubules.

Paclitaxel (Taxol) and the epothilones are antimitotic agents that promote the assembly of mammalian tubulin and stabilization of microtubules. The epothilones competitively inhibit the binding of paclitaxel to mammalian brain tubulin, suggesting that the two types of compounds share a common binding site in tubulin, despite the lack of structural similarities. It is known that paclitaxel does ...

متن کامل

Laulimalide and paclitaxel: a comparison of their effects on tubulin assembly and their synergistic action when present simultaneously.

Previous work has shown that laulimalide, a sponge-derived natural product, resembles paclitaxel in enhancing tubulin assembly and in its effects on cellular microtubules. The two compounds, however, seem to have distinct binding sites on tubulin polymer. Nearly equimolar amounts of tubulin, laulimalide, and paclitaxel are recovered from microtubules formed with both drugs. In the present study...

متن کامل

Understanding tubulin-Taxol interactions: mutations that impart Taxol binding to yeast tubulin.

We have successfully used mutagenesis to engineer Taxol (paclitaxel) binding activity in Saccharomyces cerevisiae tubulin. Taxol, a successful antitumor agent, acts by promoting tubulin assembly and stabilizing microtubules. Several structurally diverse antimitotic compounds, including the epothilones, compete with Taxol for binding to mammalian microtubules, suggesting that Taxol and these com...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ChemMedChem

دوره 7 9  شماره 

صفحات  -

تاریخ انتشار 2012